An efficient platform based on cupper complex-multiwalled carbon nanotube nanocomposite modified electrode for the determination of uric acid

author

Abstract:

A new voltammetric sensor for determination of uric acid (UA) by Cuppercomplex- multiwalled carbon nanotube (Cu-complex-CNT) nanocomposite modifiedcarbon paste electrode (CPE) is reported. The electrocatalytic behavior of theCu-complex-CNT nanocomposite modified CPE was studied in pH 2.0 phosphatebuffer solution by chronoamperometry (CA) and cyclic voltammetry (CV) in thepresence of uric acid. Due to the excellent electrocatalytic activity, enhancedelectrical conductivity and high surface area of the Cu-complex-CNT, determinationof uric acid with well-defined peaks was achieved at the Cu-complex-CNT modifiedelectrode. The catalytic peak current obtained, was linearly dependent on theUA concentrations in the range of 0.66 – 350.0μM with sensitivity of 0.05 μAμM-1. The detection limits for UA were 0.075μM, The diffusion coefficient for theoxidation of UA at the modified electrode was calculated as (4.1±0.05) ×10−5 cm2s−1. The proposed sensor was successfully examined in real sample analysis withurine and human serum and revealed stable and reliable recovery data.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Simultaneous Voltammetric Determination of Ascorbic Acid and Uric Acid Using a Modified Multiwalled Carbon Nanotube Paste Electrode

This paper describes the development, electrochemical characterization and utilization of novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of ascorbic acid (AA). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of AA about 235 mV ...

full text

Selective Electrochemical Nanosensor based on Modified Carbon Paste Electrode for Determination of NADH in the presence of Uric Acid

The electrochemical properties of a modified carbon paste electrode with the synthesized compound of 2,2'-[1,7–heptanediylbis(nitrilomethylidene)]-bis(4-hydroxyphenol) (DHBH) and graphite nanoparticle (GN) were studied by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV) methods. The proposed electrode shows excellent electrocatalytic activity towards the oxida...

full text

simultaneous voltammetric determination of ascorbic acid and uric acid using a modified multiwalled carbon nanotube paste electrode

this paper describes the development, electrochemical characterization and utilization of novel modified molybdenum (vi) complex-carbon nanotube paste electrode for the electrocatalytic determination of ascorbic acid (aa). the electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (cv) that showed a shift of the oxidation peak potential of aa about 235 mv ...

full text

Simultaneous Determination of Ascorbic Acid, Uric Acid and Tryptophan by Novel Carbon Nanotube Paste Electrode

In the present paper, electrochemical methods were used to investigate the behavior of ascorbic acid at a carbon paste electrode modified with 2,2'-((1E)-(1,2 phenylenebis(azanylylidene)) bis(methanylylidene))bis(benzene-1,4-diol) (PBD) and oxidized multiwall carbon nanotubes. The modified carbon paste electrode showed high electrocatalytic activity toward ascorbic acid; the current was enhance...

full text

Simultaneous Determination of Ascorbic Acid, Uric Acid and Tryptophan by Novel Carbon Nanotube Paste Electrode

In the present paper, electrochemical methods were used to investigate the behavior of ascorbic acid at a carbon paste electrode modified with 2,2'-((1E)-(1,2 phenylenebis(azanylylidene)) bis(methanylylidene))bis(benzene-1,4-diol) (PBD) and oxidized multiwall carbon nanotubes. The modified carbon paste electrode showed high electrocatalytic activity toward ascorbic acid; the current was enhance...

full text

Simultaneous determination of dopamine and uric acid using a glassy carbon paste electrode modified with copper- para red complex

A simple approach based on cyclic voltammetry (CV) was developed for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) using a modified glassy carbon paste electrode (GCPE). In the present study, analytical parameters were optimized and electrochemical performance of modified electrode was investigated. The calibration curves were obtained ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  104- 114

publication date 2020-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023